skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chakravarthula, Lakshman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Representational geometry and connectivity-based studies offer complementary insights into neural information processing, but it is unclear how representations and networks interact to generate neural information. Using a multi-task fMRI dataset, we investigate the role of intrinsic connectivity in shaping diverse representational geometries across the human cortex. Activity flow modeling, which generates neural activity based on connectivity-weighted propagation from other regions, successfully recreated similarity structure and a compression-then-expansion pattern of task representation dimensionality. We introduce a novel measure, convergence, quantifying the degree to which connectivity converges onto target regions. As hypothesized, convergence corresponded with compression of representations and helped explain the observed compression-then-expansion pattern of task representation dimensionality along the cortical hierarchy. These results underscore the generative role of intrinsic connectivity in sculpting representational geometries and suggest that structured connectivity properties, such as convergence, contribute to representational transformations. By bridging representational geometry and connectivity-based frameworks, this work offers a more unified understanding of neural information processing and the computational relevance of brain architecture. 
    more » « less